
WindowMasker (Supplementaty Information)

The DUST procedure for finding low-complexity
sequences
DUST finds regions within a given nucleotide sequence that have
low complexity and masks them. DUST is a heuristic algorithm that
has been frequently used both inside and outside BLAST for many
years. DUST computes scores for substrings based on how often
different three-letter sequences (referred to below astriplets) occur
in the substring. More occurrences of a triplet lead to a higher score
that grows quadratically with the number of occurrences. Higher
scores are considered to imply lower complexity. We now specify
more details, including the current parameter settings, in DUST.

The DUST algorithm examines the input sequence using all win-
dows of 64 consecutive bases; the window size of 64 is independent
of the size of the genome being masked. At the ends of the sequence,
shorter windows are also considered, with the shortest one being 3
bases. Each window is considered independently: the bases masked
in a given window do not depend on the bases masked in any other
window. For each window, a maximum of one contiguous substring
is masked. The full database sequence is masked by taking the union
of the bases masked in all windows.

For each window, all groups of three consecutive bases are con-
catenated to form triplets. DUST assumes that if a region within the
window has low complexity, then one or more triplets will occur
multiple times in the window. The algorithm uses a running count
of triplets in an interval to measure complexity. The running count
is defined as follows. LetS be any triplet andI any substring of the
sequence being masked, we define

count(S; I) = the number of timesS occurs inI.

For an indexi, let Si denote the tripletaiai+1ai+2. Then if
aj . . . ak is any substring of the sequence being masked

running count(aj . . . ak) =

k−2∑
i=j

(count(Si; aj . . . ai+2)− 1) .

For example, if tripletS occurs4 times inaj . . . ak, then it contri-
butes0+1+2+3 to the running count. DUST assigns a complexity
score to the intervalI using the formula

dust score(I) =

{
10× running count(I)

(len(I)−3) if len(I) > 3; and
0 otherwise.

The algorithm may mask one sufficiently high scoring interval in
a window using the following algorithm. LetW = a` . . . am be a
window starting at character` and extending to characterm; W will
have length 64 except at the ends of sequences.

1. For i = ` + 2, . . . , m, calculate the score of each prefix ofW
of the forma` . . . ai.

2. Let a` . . . ap be the high-scoring prefix found in step 1. If the
score ofa` . . . ap exceeds a threshold (set to 20 by default),
find a subsequenceaj . . . ak with maximal score. This final
subsequence is the region that is masked in the current window.
Observe that in step 1, the left endpoint was fixed at`, but for
the high-scoring subsequence` ≤ j < k ≤ p.

Step 1 searches for a large subsequence within each window that
has low complexity (high score). If a subsequence of sufficiently

Nmer frequency

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

0 20 40 60 80 100 120

90

91

92

93

94

95

96

97

98

99

100

Fruitfly
Rat
Human
Honeybee

0 20 40 60 80 100 120

90

91

92

93

94

95

96

97

98

99

100

0 20 40 60 80 100 120

90

91

92

93

94

95

96

97

98

99

100

0 20 40 60 80 100 120

90

91

92

93

94

95

96

97

98

99

100

Fig. S1. Portions of cumulativeNmer frequency distributions for human,
rat, honeybee, and fruitfly genomes. Distributions for mouse and D. pseu-
doobscura are not shown as they are indistinguishable from those for human
and fruitfly, respectively.

Table S1. WinMask parameters used in WindowMasker tests on six
genomes.

Genome N Tthreshold Textend Thigh Tlow

Human build 34.1 15 86 57 154 16
Mouse build 32.1 15 74 50 138 15
Mouse build 33.1 15 77 50 141 15
Fruitfly build 6.3 13 39 28 61 8
Honeybee build 1.1 13 110 70 210 13
Pseudoobscura 13 39 28 62 9
Rat build 2.1 15 70 46 127 14

high score is found, then step 2 refines the subsequence into a pos-
sibly smaller subsequence with higher score. The end result is the
identification of a maximum of one interval within each window
that has low complexity. DUST is conservative, in that if a high-
complexity region is flanked by two low-complexity regions, whose
overall score would exceed the score threshold, then only the worst
low-complexity region is masked. This prevents the algorithm from
erroneously masking too many bases, but in the process can miss
low-complexity regions that are close together.

For the example given in the Introduction, the DUST output is:
GGTTGGTcaaataaaaagtgatgtatgaaaaagagg
caaaacaacaagaagaaaagattgaaaaaatgagag
ctgaagatggtgaaaaTTATGACATCAAAAAGCAGG

with the masked portion in lower case. Interestingly, the five con-
secutive As near the end are not masked. This is partly because the
precedingTTATGACATCcontains infrequent triplets which lowers
the score sufficiently.

Further development of DUST is ongoing, with the twin goals
of improving speed and of improving masking for the database
searching application.

1



Morgulis et al.

Table S2. Histogram for number of regions of given length masked by one method
and not masked at all by the other method.

length (bp) ≤ 100 100 - 1000 1000 - 2500 2500 - 5000 > 5000
Human build 34.1

RepeatMasker 157165 227445 118 1 0
WindowMasker 6088908 14071 23 7 1

Mouse build 32.1
RepeatMasker 142200 202417 30 0 0
WindowMasker 5066333 17978 100 11 2

Mouse build 33.1
RepeatMasker 146588 213224 35 0 0
WindowMasker 4728245 19290 298 36 5

Fruitfly build 6.3
RepeatMasker 1697 357 9 1 0
WindowMasker 596121 791 18 1 1

2


